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Abstract

In many cases, the critical state of systems that reached the threshold is characterised
by self-similar pattern formation. We produce an example of pattern formation of this
kind – formation of self-similar distribution of interacting fractures. The driving force of
the fracture system formation is the crack growth due to the action of stress fluctua-5

tions. The importance of this mechanism is that even when the fluctuations have zero
average the cracks generated by them could growth far beyond the scale of stress fluc-
tuations. Further development of the fracture system is controlled by crack interaction,
which in the case of isotropically oriented cracks leads to the emergence of self-similar
distributions.10

The presence of self-similar distributions of fractures in a material poses a challenge
in continuum modelling, since this material becomes discontinuous at any scale. We
develop a continuum fractal mechanics to model mechanical behaviour of such mate-
rials. We introduce a continuous sequence of continua of increasing scales covering
this range of scales. The continuum of each scale is specified by the representative15

volume elements of the corresponding size over which averaging is performed in the
process of defining the field variables in the continuum. Subsequently, at each scale
the material is modelled by a continuum that hides the cracks of smaller scales while
explicitly introducing larger structural elements. The properties assigned to the contin-
uum are effective characteristics accounting for the macroscopic effect of the hidden20

cracks.
Using the developed formalism we investigate the stability of self-similar crack distri-

butions with respect to crack growth and show that while the self-similar distribution of
isotropically oriented cracks is stable, the distribution of parallel cracks is not. For the
isotropically oriented cracks scaling of permeability is determined. For the crack dis-25

tribution produced by the action of stress fluctuations permeability increases as cube
of crack radius. This property could be used for detecting this specific mechanism of
formation of self-similar crack distributions.
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1 Introduction

Fluid flow through rocks and the Earth’s crust is at large extent controlled by existing
fracture systems and networks. These systems often have complex geometry with
strong showing of self-similarity and fractality (e.g., Scholz and Aviles, 1986; Gelikman
and Pisarenko, 1989; Scholz, 1990; Olding, 1992; Barton and Zoback, 1992; Turcotte,5

1993; Gillespie et al., 1993; Yamamoto et al., 1993; Dubois, 1998; Hodkiewicz et al.,
2005). Hence, understanding of the flaw mechanisms requires the understanding of
the formation and evolution of fracture systems resulted from a combined action of
loading acting upon and interaction between the fractures.

One of the features of complex systems is self-organisation and formation of specific10

patterns in their structure or behaviour which have no resemblance with the original
structure of the system or behaviour of its components. Pattern formation of observed
in many natural and artificial systems (e.g., Walgraef, 1997), in particular, in such pro-
cesses as crystal growth and other growth phenomena (e.g., Langer, 1980, 1989),
dislocation movement (e.g., Weiss and Marsan, 2003), movement of granular materi-15

als (e.g., Baxter et al., 1989). The pattern formation is usually related to reaching by a
system parameter or state variable a certain threshold value.

In many cases a prerequisite for pattern formation is the presence of non-linearity in
one form or another. In particular, non-linear systems do not support the superposition
principle. This is often considered as a nuisance as it causes additional complications20

to the modelling; however there is more than that. If the input signal is in a form of
noise with zero mean, then the linear system (L) will necessarily produce the output
with zero mean, while some non-linear systems (NL) react by delivering non-zero shift
to the output:

〈u〉 = 0 ⇒ 〈Lu〉 = 0, 〈u〉 = 0 ⇒ 〈NLu〉 6= 0 (1)25

Here the symbol 〈.〉 stands for the operator of averaging. This statement, whatever
trivial it might look, suggests that in some non-linear systems trivial noise may have
non-trivial implications. In particular, by this mechanism the whole fracture system
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could be produced even if the total applied force is zero (Dyskin, 1999, 2002). In this
case the role of the input noise is played by spatial stress fluctuations (spatial stress
non-uniformity).

Fracture formation is a non-linear phenomenon due to its threshold nature and irre-
versibility. In classical scenarios fracturing starts when the load reaches a threshold5

and then if propagation of a single crack is restricted, new cracks appear and form a
certain pattern as dictated by the loading conditions and crack interactions. In the case
of spatial stress fluctuations with zero mean the role of the loading parameter is played
by the amplitude (or standard deviation) of the fluctuations: local fractures appear when
the amplitude of stress non-uniformity reaches a critical value. More precisely, the lo-10

cal fracturing occurs when and where the magnitude of a corresponding tensile stress
component exceeds local strength. Since the probability of this happening, increases
with the increase in the number of loci subjected to this model of stress fluctuations and
eventually upon the size of the part of the material in question, a size effect in strength
can be expected. This mechanism is investigated in Sect. 2 of this paper.15

Types of the pattern formed in complex systems are numerous ranging from simple
periodic ones to extremely complex patterns typical for living matter. Amongst spatial
patterns there is however one specific type of patterns outstanding in its ubiquity –
the self-similar patterns whose parameters or state variables are expressible via power
functions of scale. The self-organised criticality (Bak et al., 1987) is a well known,20

but not the only, mechanism of producing self-similar patterns. Self-similarity, i.e. the
absence of a characteristic size is also typical for physical systems at critical stage or
at phase transition (e.g., Haken, 1978), in percolation phenomena (e.g., Stauffer and
Aharony, 1992) or in other situations when interaction between the elements of the sys-
tem create patterns which are independent of the elements (and hence the size of the25

elements) and do not involve emergence of intermediate characteristic sizes. Power
law distributions also provide approximations for a range of complex natural phenom-
ena (e.g. Sornette, 2000) and thus provide the cases for apparent self-similarity.

One of the mechanisms of producing self-similar patterns is the interaction between
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the elements of the system. If the elements are different (say have different sizes) or
non-regularly located, the interaction can magnify the influence of same elements at
the expense of the other. For example in the percolation models where the connect-
edness of marked elements is considered, the interaction is essentially geometrical: if
marked elements are situated close enough they form clusters. The latter have larger5

surface area than the single marked element and thus can easier be connected to other
marked elements or clusters thereof. In the case of cracks under the condition of stable
growth delivers anther example. Larger cracks are, on average, more susceptible to
the influence of interaction than the small ones. Thus the large cracks are capable of
growing to larger extent. We discuss this mechanism in Sect. 3 of this paper.10

Section 4 introduces the method of modelling multiscale self-similar crack distribu-
tions using the notions of continuum mechanics. Section 5 discusses stability of self-
similar crack distributions with respect to crack growth. Section 6 considers transport
properties such as permeability of materials with self-similar crack distributions.

2 Non-linearity and fluctuations: a mechanism of cracking in the absence of15

applied force

In what follows we assume that the material is isotropic and elastic such that all non-
linear effects are related to the formation and propagation of fractures or cracks. The
formation of fracture systems is usually attributed to two major factors: the application
of external loading or the action of residual stresses “frozen” in the material. The latter20

are not directly related to the applied load but rather caused by shrinkage or other non-
uniform deformation of the material due to cooling or phase transition. Superficially
these two cases look completely different: the residual stresses form a non-uniform
stress field with vanishing average (as there is no external load applied), while the
external load directly induces stresses which after reaching the strength limit produce25

fracturing. It is important to emphasise, that due to heterogeneity of the material the
stresses created by the loading are not uniform and usually could be split into two parts:
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a uniform or slightly varying part and a varying part with vanishing average. Thus the
stress field σi j (x), where x is a point in the material, can be represented as a sum of a

slowly varying (or a homogeneous) part σ0
i j and fluctuations ∆σi j (x) with zero mean:

σi j (x) = σ0
i j + ∆σi j (x),

〈
∆σi j

〉
= 0 (2)

When σ0
i j=0, the total force of the stress distribution being proportional to the average5

stress vanishes. Had the system be linear this would mean that the stress fluctuations
have no effect on the fracture process. However, the fracture process is highly non-
linear. In particular, in brittle materials even the sense of the stresses matter as only
positive (tensile) stress can directly induce fracturing, while the compressive stress
should do it through local transition to tensile stress (That is why in brittle materials10

compressive strength is an order of magnitude higher than the tensile one.) Therefore,
fractures are preferentially formed in the areas subjected to stress fluctuations with
positive sign.

In the case of residual stresses, obviously, σ0
i j=0, so only tensile parts of stress

fluctuations, i.e. the loci where the corresponding component of stress fluctuations is15

positive, should be considered as a part of the mechanism of fracture formation. In the
case of applied load there are situations when tensile components of σ0

i j also vanish
such that, as far as the crack formation is concerned, again only the tensile parts of
stress fluctuations matter. The main example is failure in uniaxial compression, Fig. 1a.
In this case cracks can only form in the directions parallel to the load direction where20

no force is applied from outside. Local tensile stress appear as a part of stress non-
uniformity caused by the material heterogeneity, for instance by the presence of defects
(e.g., pores as in Fig. 1a).

The presence of defects or other heterogeneities alters the stress field without
changing the total force and in same cases transfer compressive stress into tensile.25

Figure 1a illustrates one of the mechanisms of such a transition. A circular pore of
radius R loaded by compressive stress of magnitude p in x-direction induces vertical
normal stress, σyy on the x-axis, which would be absent in the absence of the hole.
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The distribution shown in Fig. 1 (due to symmetry only the case x>0 is shown) is of a
fluctuational nature with zero mean. The stress near the hole is positive (tensile) which
when reaches sufficient magnitude, gives rise to tensile cracks, Fig. 1b.

An important observation should be made from this example: the crack is generated
at the place of maximum stress (at the pore contour in this case) and then can grow5

beyond the area of the action of tensile stress. In general, this point is illustrated
by Fig. 2, where a possible distribution of stress fluctuations is sketched. The crack
is formed at the place where the tensile stress reaches its maximum (the origin of
the coordinate set is placed there). Then, the crack grows to the size considerably
exceeding the characteristic length of stress fluctuations.10

In order to analyse this situation we consider a 2-D case of a planar crack of length
2a, Fig. 2 subjected to the stress fluctuations ∆σyy (x) having zero average. We will
assume that the stress fluctuations are represented by an ergodic random process
such that statistical average coincides with the spatial average:

∆σ̄yy (x) =
〈
∆σyy

〉
= 0 (3)15

Consider a realisation ∆σyy (x) of the random field of stress fluctuations. Suppose the
crack is placed in the material at the place where this stress acts. We also assume,
for the sake of simplicity, that the emerging crack in not infinitesimal thin such that the
compressive parts of the stress fluctuations (negative parts of Fig. 2) are insufficient to
bring the opposite faces of the crack to contact. The criterion of growth of the tensile20

crack in this case has the form (e.g., Tada et al., 1985):

KI = KIc, KI =
1

√
πa

a∫
−a

∆σyy (t)

√
a + t
a − t

dt (4)

where KI is the mode I stress intensity factor, which is a coefficient at the square root
singularity of the stress field near the crack tip, KIc is the fracture toughness – the
critical value of the stress intensity factor at which the crack starts growing.25
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As the crack location in this example is independent of the stress field, the average
stress intensity factor

K̄I =
1

√
πa

a∫
−a

∆σ̄yy (t)

√
a + t
a − t

dt = 0 (5)

as property (3) dictates.
This result corresponds to the intuitive perception that on average, zero cause has5

zero effect. The result changes completely if the crack is created by the very stress
fluctuations. So, suppose that the crack is initiated at the place where this realisation
assumes a maximum and place the origin of the co-ordinate frame at that place. For
a different realisation of random stress fluctuations the maximum stress will be at a
different location, so the crack will form there and the origin of the co-ordinate frame10

shall be placed at this new location. Now, because the crack centre is correlated with
the stress field, the mean value of the stress intensity factor will no longer vanish. If
ρ is the correlation length of the random stress fluctuations then the stress within this
distance from the origin will survive averaging such that

K̄I ∼
1

√
πa

ρ∫
−ρ

∆σ̄yy (t)

√
a + t
a − t

dt > 0 (6)
15

Here the stress at the origin is assumed to be positive.
More rigorous representation of the effect of stress fluctuations can be obtained by

involving the concept of conditional average, as the stress present in Eq. (6) is, in fact,
the conditional mathematical expectation, E

(
∆σyy (t)

∣∣∆σyy (0)=σt
)
, where E stands

for the operator of mathematical expectation and σt is the local tensile strength of the20
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material. Subsequently,

K̄I =
1√
πa

∞∫
−∞

E
(
∆σyy (t)

∣∣∆σyy (0) = σt
)√a+t

a−tdt

∼ 1√
πa

ρ∫
−ρ

E
(
∆σyy (t)

∣∣∆σyy (0) = σt
)√a+t

a−tdt
(7)

For a particular case of Gaussian stress fluctuations the statistical distribution is con-
trolled by unconditional mathematical expectation and the correlation function B(t)

B(t) = E
(
∆σyy (0)∆σyy (t)

)
. (8)5

Then the conditional mathematical expectation can be expressed in the following form
(e.g., Feller, 1971)

E
(
∆σyy (t)

∣∣∆σyy (0) = σt
)
= σt

B(t)
B(0)

(9)

Hereafter, for the sake of simplicity we return to our previous notations, which express
the essence of the phenomenon without going into mathematical details. If the crack10

length is much higher than the correlation length then, obviously,

K̄I =
F

√
πa

, F ∼
ρ∫

−ρ

σ̄yy (t)

√
a + t
a − t

dt ∼
ρ∫

−ρ

σ̄yy (t)dt, a � ρ (10)

This formula coincides with the expression for the stress intensity factor for a crack
loaded with a pair of concentrated forces, Fig. 3.

One can observe that the stress intensity factor given by the first equation in Eq. (10)15

decreases with crack growth since the crack length is in the denominator of the formula.
The crack growth is therefore stable: in order to maintain crack growth one needs to
increase the magnitude of the forces, that is the amplitude of the stress fluctuations.
If the crack were loaded by stresses with not vanishing total force, the stress intensity
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factor, KI=σ̄yy
√
πa would increase as the crack grows, which indicates the unstable

crack growth: in a material with uniform fracture toughness, once started the crack can
grow indefinitely. It is clear now that while the stress fluctuations with zero average
can support crack growth, the growth can only be stable: unstable crack propagation
requires non-vanishing total force.5

In the 3-D case the model of crack growth caused by stress fluctuations will be similar
– a crack opened by a pair of concentrated forces. As further simplification necessary
in 3-D, we assume that the crack grows isotropically as a disc-like crack, Fig. 4.

In this case, the mode I stress intensity factor for the disk-like crack of radius R has
the form (e.g., Tada et al., 2000)10

KI =
F

(πR)3/2
(11)

This expression together with the criterion of crack growth

KI = KIc (12)

will be used in the following two sections when the crack interaction and the formation
of fracture patterns are discussed.15

The local tensile strength, σt, plays a role of the first threshold: as soon as the ampli-
tude of stress fluctuations reaches the local strength, a crack will be formed leading to
fracture patterning. Its further development is also controlled by the fracture toughness
of the material, which constitutes the second threshold in the multistage process of
fracture pattern formation.20

3 Emergence of self-similar distributions

We assume now that a number of cracks have been formed by the action of stress fluc-
tuations and that they grow as disc-like cracks each opened by a pair of concentrated
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forces of the same average magnitude F . We also assume that the material is isotropic
and the cracks are oriented chaotically such that the whole system remains isotropic.

As the cracks grow, the effect of interaction between them becomes significant. In
this case the interaction means that each crack is subjected to a combination of the
pair of concentrated forces that open the crack and some additional, generally non-5

uniform stresses generated by all other cracks. This additional stress has zero mean
as it is not associated with any external loading. Subsequently, solving the problem of
interaction means finding these additional stresses, which is computationally involved
since it requires solving a system of integral equations of the order of 3N, where N is
the number of cracks.10

A major simplification can be achieved if one takes into account that the neighbour-
ing cracks cannot be of the same size, as the conditions and circumstances of their
appearance were different. We will bring this notion to its extreme and assume that the
cracks have a wide distribution of sizes (Salganik, 1973). This means that the cracks of
close size are in low concentration and hence do not interact directly. The interaction15

is essential only between the cracks of markedly different sizes. If this is the case, then
the method of effective characteristics can be applied to compute the average effect of
interaction. According to the method (Salganik, 1973) each crack can be considered
in an effective medium defined by all smaller cracks.

Figure 5 illustrates the idea. Firstly we replace the original material containing only20

the smallest cracks with an effective medium which provides the same average re-
sponse as the replaced system. Here “average” is understood in terms of stress and
strain averaged over volume elements that are much larger than the corresponding
crack size (in this case the size of the smallest cracks) and contain sufficiently large
number of these cracks. Because of elasticity these average stress and strain are25

related by Hooke’s law with the parameters called effective characteristics. As we as-
sumed that the neighbouring cracks (the ones that interact most strongly) have very
large difference in sizes, we further suppose that they are much larger than the size of
the averaging volume elements. Subsequently, we can consider these larger cracks as
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situated in the effective medium. Thus the influence of the smaller cracks is accounted
for in an integral fashion through the effective medium. The particular calculations
are facilitated by the assumption that the cracks of similar size do not interact; hence
approximation of low concentration based on the solution for a single crack in infinite
medium can be used.5

We can repeat this procedure with the cracks of the next size and so on, as shown
in Fig. 5. At each step, when the properties of the corresponding effective medium are
calculated the cracks of the relevant sizes are considered to be non-interacting allowing
the use of the approximation of low concentration. The interaction is thus accounted for
through the succession of the effective media with properties eventually determined by10

all smaller cracks. In essence this scheme is an asymptotic one: the accuracy of the
approximation thus produced increases as the difference in sizes of interacting cracks
increases and the concentration of the cracks of the same size decreases (see proof
in Dyskin, 2002).

The outlined procedure dealt with the “upward” interaction, i.e. the average influence15

of small cracks on the large ones. The “downward” interaction, i.e. the influence of
the additional stresses generated by large cracks on the small ones does not need to
be considered if we are only interested in the average effects, as the average stress
generated by any crack is zero (see Appendix for the proof).

We now use the above method to determine the size distribution the cracks driven20

by the concentrated forces assume due to interaction. We start with expressing the
effective moduli for the material with cracks up to a given radius. Suppose the crack
sizes are distributed according to the probability density function f (R) with the usual
normalisation:∫ Rmax

R0

f (R)dR = 1 (13)
25

Here R0, Rmax are the minimum and maximum crack sizes respectively. If N is the
total number of cracks per unit volume (N has units of inverse meter cubed), then the
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number of cracks per unit volume with radii between R and R+dR is

N(R,R + dR) = Nf (R)dR (14)

The total number of cracks is supposed to be constant, i.e. the generation of new cracks
is neglected. We also use the dimensionless crack concentration

dv = NR3f (R)dR, v(R) = N

R∫
R0

R3f (R)dR (15)
5

Let the Young’s modulus and Poisson’s ratio of the effective medium replacing the
material with cracks of radii up to R be E (R) and ν(R). Then, according to Salganik
(1973), the effective characteristics for the medium with new cracks of radii between R
and R+dR can be computed by considering these new cracks as being immersed in
the effective medium whose properties are characterised by E (R) and ν(R). These new10

cracks are considered to be non-interacting as their concentration is, according to the
first equation in Eq. (15), infinitesimal. We use the approximation of low concentrations,
which gives an expression linear with respect to dv. The method described is called
the differential self-consistent method. For the case of isotropic distribution of disc-like
cracks the effective characteristics have the form (e.g., Salganik, 1973)15

E (R + dR) = E (R)

[
1 − 16

45
(10 − 3v(R))

1 − v(R)2

2 − v(R)
dv

]

v(R + dR) = v(R) − 16
15

(3 − v(R))
1 − v(R)2

2 − v(R)
dv

E (0) = E0, v(0) = v0 (16)

Here E0, ν0 are the material’s Young’s modulus and the Poisson’s ratio respectively. It
is important to note that the effective characteristics are solely determined by the crack20

concentration rather than separately by their size and number. Also, one can observe
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that the effective Poisson’s ratio decreases, as the crack concentration increases. This
means that for the sake of simplicity the Poisson’s ratio can be neglected, ν(R)=0,
which leads to the following simplified equation

dE (R)

E (R)
= −16

9
NR3f (R)dR, E (R0) = E0 (17)

In the process of growth the crack distribution changes. The growth of the cracks is5

affected by the interaction and cracks of different size are affected differently. In order
to account for this influence consider the condition of growth of a crack or radius R.
In the spirit of above approximation, we shall consider this crack as being immersed
in an effective medium with effective characteristics determined by all smaller cracks.
As these smaller cracks make the material softer, as stipulated by the negative sign10

in Eq. (17), the opening of the crack in question will be larger as compared to the
same crack in the original material. The crack opening is inversely proportional to
the Young’s modulus (as routinely followed from the dimension analysis), hence the
increase in the average crack opening associated with the interaction is proportional
to the factor E0

/
E (R), the influence of the Poisson’s ratio being neglected. Crack15

growth is controlled by stress concentration in a small vicinity of the crack contour.
It is important to realise here that while the crack opening is on average dictated by
the effective medium replacing the material with smaller cracks, the microscopic stress
distribution at the crack contour is acting in the original material. Hence, the transition
from the crack opening profile to the stress concentration is controlled by the Young’s20

modulus of the original material. Therefore the increase in the stress concentration due
to the interaction is proportional to the increase in the crack opening. Subsequently,
the stress intensity factor controlling the stress concentration is, on average, increased
as1

〈KI (R)〉
K 0
I

=
E0

E (R)
(18)

25

1 A rigorous description and proof of this concept could be found in Dyskin (2002).
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Using Eq. (18) in conjunction with the expression for the stress intensity factor (Eq. 11)
for the disc-like crack opened by a pair of concentrated forces in the original material
and the criterion of crack growth (Eq. 12) one obtains

E (R) =
F E0

KIc(πR)3/2
(19)

Differentiating Eq. (19) with respect to R and substituting into Eq. (17) gives5

f (R) =
27

32R4
(20)

What is obtained is a power law. It is not yet self-similar distribution as it has bound-
aries, lower and upper cutoffs, R0, Rmax. The lower cutoff, i.e. the average radius of
the crack not affected by the interaction, can be determined from Eqs. (11) and (12):

R0 =
F 2/3

πK 2/3
Ic

(21)
10

The upper cutoff is dictated by the normalisation condition (Eq. 13):

Rmax

R0
=

[
1 −

(
F

Fmax

)2
]−1/3

, Fmax =
3π3/2KIc√

2N
(22)

If the concentrated force i.e. the loading associated with the action of the stress fluctu-
ations increases, the upper cutoff increases and becomes infinite as the concentrated
force F approaches its critical value, Fmax. This indicates that with the load increase15

the crack distribution approaches the self-similar one. Subsequently, the critical value,
Fmax or the corresponding amplitude of the stress fluctuations can be considered as
a threshold after which the fracture pattern becomes self-similar. This constitutes the
third threshold in the multistage process of fracture pattern formation.
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We can conclude that in the simple case of isotropically oriented cracks the interac-
tion constitutes a mechanism of the emergence of self-similarity in the crack distribu-
tion. The isotropic crack distribution, albeit important, is only one example of distribu-
tions observed in reality. Another important class is given by systems of parallel cracks.
Unfortunately, the direct analysis of the sort presented above meats with considerable5

technical difficulties. These difficulties could be partially bypassed if we consider self-
similar distributions from the very beginning and check whether the crack growth pre-
serves self-similarity. Preservation of self-similarity is obviously a necessary condition
of emergence of self-similar distributions and it is easier to check. The corresponding
formalism is introduced in the following section.10

4 Mechanics of self-similar materials

The approach to modelling crack interaction described in the previous section – the
introduction of a set of effective media that model the original material with cracks of
size smaller than the specified one – is especially attractive in the case of self-similar
crack distributions. Indeed, the transition from one size to another utilised in the method15

directly corresponds to the multi-scale nature of self-similar distributions. Furthermore,
additional simplification is delivered by the case of self-similarity, since it implies that
all quantities are expressed by power functions of scale (e.g., Barenblatt and Botvina,
1980; Gelikman and Pisarenko, 1989; Zosimov and Lyamishev, 1995). Subsequently,
in the isotropic case20

E (R) ∼ R−α, ν = const (23)

Here the scaling exponent for the Young’s modulus α>0, while the scaling exponent for
the Poisson’s ratio vanishes since the Poisson’s ratio is bounded, −1≤ν≤0.5.

When the material with cracks is anisotropic (e.g., the cracks are arranged in one
or several sets of parallel cracks), the Hooke’s law is represented by a fourth rank ten-25

sor of elastic moduli, Ci jkl , i , j, k, l=1..3 or the inverse tensor of elastic compliances,
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Ai jkl , i , j, k, l=1..3, each having 21 independent components. Despite this apparent
complication the scaling remains simple: Dyskin (2004) proved that all non-zero com-
ponents of a tensor must scale with the same exponent. In particular,

Ci jkl (H) = ci jklH
α, Ai jkl (H) = ai jklH

β, i , j, k, l = 1..3 (24)

Thus scaling is always isotropic, only the pre-factors, ci jkl and ai jkl describe5

anisotropy.
We can now use this scaling and preform transition from R to R+dR in the spirit of

Eq. (16):

dCi jkl (R) = −∆Ci jkl (R)dR (25)

where −∆Ci jkl (R)dR is the contribution of cracks of radius R into the effective moduli.10

Because of self-similarity

∆Ci jkl (R) = ∆ci jklR
κ (26)

Substituting Eqs. (24), (26) into (25) one obtains that κ=α−1 and

αci jkl = −∆ci jkl (27)

This is a system of, generally, 21 equations for 22 unknowns. Since the pre-factors15

for both moduli and the increments have the same units, one of the pre-factors can be
chosen arbitrarily, while the others and the exponent can be found from Eq. (27). We
also note that this system is a general one; no assumptions on the nature of interaction
between the cracks have yet been made.

Now, in order to solve system (27) further analysis of self-similar crack distribution is20

needed. We first note that the general form of self-similar distributions is

f (R) =
w
Rm (28)
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The main difficulty with such a distribution is that because it ranges from zero to infinity,
the usual normalisation
∞∫
0

f (R)dR = 1 (29)

involves divergent integral for any m. It was proposed by Dyskin (2004) to view self-
similar distributions only as approximations of the real ones which range between lower5

and upper cut-offs. Subsequently, the normalisation factor should depend on the cut-
offs. We will determine it in such a way that the self-simular distribution produces the
same total concentration, vt, of cracks between the lower and upper cut-offs, as in the
real system. Then

N

Rmax∫
R0

R3f (R)dR = vt (30)
10

Using Eq. (28) one obtains

vt =


Nw
4−mR4−m

max

[
1 −

(
R0
Rmax

)4−m]
when m 6= 4

Nw ln Rmax
R0

when m = 4
(31)

It is obvious from Eq. (31) that in order to keep the total concentration constant,
the concentration factor, w, must tend to zero as the range of self-similarity widens,
Rmax

/
R0→∞. In this sense, the self-similarity can be regarded as an asymptotic prop-15

erty.
In order to be able to use the method of effective characteristics considered above,

we need the concentration of cracks of similar size to be infinitesimal. Consider the
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concentration of cracks in the range
(
R
/
n,R

)
, where n>1:

v
(
R
n
,R

)
= N

R∫
R
n

R3f (R)dR =

{
Nw
4−mR4−m

(
1 − nm−4

)
when m 6= 4

Nw lnn when m = 4
(32)

Obviously, the crack concentration is independent of the crack size only when m=4.
Furthermore, as follows from Eq. (31) only when m=4, the concentration of cracks of
each size tends to zero uniformly with respect to the crack size as the range of self-5

similarity widens, Rmax
/
R0→∞:

v
(
R
n
,R

)
= vt

lnn

ln
(
R0

/
Rmax

) −→
R0/Rmax→∞

0 (33)

Dyskin (2004) called the case m=4 the self-similarity in narrow sense. In this case
the probability to find in a vicinity of a crack of size R other cracks of similar size also
tends to zero as Rmax

/
R0→∞, which justifies the use of the differential self-consistent10

method. It is not surprising then that this type of self-similarity is reproduced by the
mechanism described in the previous section.

Opposite to this, when, say, m<4

v
(
R
n
,R

)
= vt

(
R

Rmax

)4−m (
1 − nm−4

)
(34)

This concentration tends to zero as Rmax
/
R0 → ∞ for any fixed crack size R, but does15

not tend to zero for R∼Rmax. What this means is that asymptotically the main crack
concentration resides with the largest cracks, while the total concentration of all smaller
cracks is negligible. Similarly, for m>4 the smallest cracks are in concentration close
to vt, while the concentration of all other (larger) cracks is vanishing.

Now, using the crack distribution (28) with m=4 and w determined by the corre-20

sponding equation from Eq. (31) we can rewrite the general equation (27). According
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to the differential self-consistent method, the pre-factor of the moduli increment ∆ci jkl
is determined by the contribution of non-interacting inhomogeneities considered in an
effective continuum. This contribution is proportional to the concentration of the group
of inhomogeneities at hand, and hence to w since the inhomogeneities of the same
scale do not interact due to their low concentration. System (27) can then be rewritten5

in the form

αci jkl = −wΛi jkl (c1111, c1112, . . . c3333) , i , j, k, l = 1..3 (35)

where the function Λi jkl , homogeneous of the first degree, represents the contribution
of cracks to the elastic moduli at each step of the self-consistent method.

A similar system could be obtained for the pre-factors for the scaling of the tensor of10

effective compliances, Dyskin (2004):

βai jkl = wSi jkl (a1111, a1112, . . . a3333) , i , j, k, l = 1..3 (36)

Here the function Si jkl , also homogeneous of the first degree, represents the contribu-
tion of cracks to the compliances at each step of the self-consistent method.

For the case of isotropic distribution of disc-like cracks considered in the previous15

section, function Λi jkl can be extracted from Eq. (16). As a result, system (35) assumes
the form{

αe = −16
45 (10 − 3ν) 1−ν2

2−ν we

αν = −16
15 (3 − ν) 1−ν2

2−ν wν
(37)

where e is a pre-factor for the scaling of the Young’s modulus.
This system has only one non-trivial solution:20

ν = 0, E = eR− 16
9 w (38)

Consider now a case of a set of parallel disc-like cracks. Suppose the cracks are ori-
ented perpendicular to the x3 axis and distributed self-similarly with the distribution
function (28) and m=4. For this case the effective compliances can be found from
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the general solution by Vavakin and Salganik (1978) for a transverse-isotropic material
with disc-like cracks parallel to the plane of isotropy. The Hooke’s law for a transverse
isotropic material is expressed in the co-ordinate set (x1, x2, x3) through the compli-
ances in a 6x6 matrix form as follows

ε11 = A11σ11 + A12σ22 + A13σ33
ε22 = A12σ11 + A11σ22 + A13σ33
ε33 = A13σ11 + A13σ22 + A33σ33
ε23 = 1

2A44σ23
ε13 = 1

2A44σ13
ε12 = (A11 − A22)σ12

(39)

5

Vavakin and Salganik’s (1978) solution gives in the case of low crack concentration:

A11 = A0
11, A12 = A0

12, A13 = A0
13

A33 = A0
33 +

8v
3A0

11

√
B0

[
A0

11A
0
33 −

(
A0

13

)2
]

A44 = A0
44 +

16v
3 A0

44

√
B0

[
(A0

11)
2−(A0

12)
2]

A0
11A

0
44+

√
1
2B

0A0
44

[
A0

11+A
0
12

]
B0 = A0

11A
0
44 + 2A0

13

[
A0

11 − A0
12

]
+ 2

√[
A0

11A
0
33 −

(
A0

13

)2
][(

A0
11

)2
−
(
A0

12

)2
]

(40)

Here A0
11, A0

12, A0
13, A0

33, A0
44 are the compliances of the material.

The scaling equations (36) after rewriting in the 6×6 matrix form can be obtained by
replacing v with w bringing A0

i i to the left-hand sides and then replacing Ai i−A
0
i i with10

βai i and, finally, replacing A0
i i with ai i in the remaining parts. This yields the following
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scaling equations

βa11 = 0, βa12 = 0, βa13 = 0

βa33 = 8w
3a11

√
B
[
a11a33 − (a13)2

]
β = 16w

3

√
B
[
(a11)2−(a12)2

]
a11a44+

√
1
2Ba44[a11+a12]

B = a11a44 + 2a13 [a11 − a12] + 2

√[
a11a33 − (a13)2

] [
(a11)2 − (a12)2

]
(41)

Suppose β 6=0, then the first three equations of Eq. (41) produce a11=a12=a13=0. On
the other hand, the third equation produces β=0. This contradiction means that the
scaling exponent vanishes. As a result we obtain the following scaling law:5

Ai j = ai jH
β, β = 0 ⇒ Ai j = ai j (42)

This means that the compliances and hence the moduli are scale-invariant.

5 Stability of self-similar crack distributions

We now use the introduced concepts to investigate the stability of two self-similar crack
distributions: isotropically oriented cracks and a set of parallel cracks.10

Firstly we need to determine the scaling for the average stress intensity factor. In
line with Eq. (18), the average SIF scales as

〈KI (R)〉 ∼ R−α (43)

For isotropic cack distribution this expression is a straightforward generalisation of
Eq. (18). It is however valid for any anisotropy since all non-zero components of the15

tensor of elastic moduli scale with the same exponent α (the scaling law is always
isotropic).
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We now substitute scaling (43) into the expression for the stress intensity factor (11)
and obtain

〈KI (R)〉 ∼ R−α− 3
2 . (44)

When scaling Eq. (44) is substituted into the criterion of crack growth (Eq. 12) under
the assumption that the latter is scale-invariant it follows that the exponent in Eq. (44)5

must be zero. Therefore, if the cracks are to grow keeping self-similarity, the exponent
of the moduli scaling cannot be arbitrary, but should satisfy the following condition

α = −3
2

(45)

For isotropic distribution of disc-like cracks this, according to scaling law Eq. (38), cor-
responds to10

w =
27
32

(46)

Thus the form of the crack distribution remains constant. This means that in order to
maintain the concentration factor constant the crack growth must only affect the lower
and upper cutoffs of the distribution: both Rmax and R0 get increased as dictated by the
normalisation equation (30).15

After substituting Eq. (46) into Eq. (28) the distribution (20) is recovered, which indi-
cates that the analysis made on the basis of self-similar mechanics is consistent with
the model of the emergence of self-similar distribution of isotropically oriented cracks.

In the case of a single set of parallel cracks condition (46) cannot be satisfied due to
the trivial scaling (α=0). Therefore, for such crack distributions, the self-similarity can-20

not be maintained: it will be destroyed by crack growth. Thus the necessary condition
of emergence of self-similar distribution is not met, which means that the mechanism of
stress fluctuations and crack interaction cannot produce a single set of parallel cracks
with self-similar distribution of sizes.
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6 Permeability in the presence of self-similar crack distributions

We now consider the change in permeability, K , the self-similar crack distribution in-
duces in an already permeable material. This is a special case when the cracks en-
hance permeability because each of them serves as a conduit in a part of the ma-
terial it belongs to without forming interconnected fracture networks. Naturally, the5

self-similarity of the crack distribution will lead to a power law scaling of the effective
permeability:

K = kRη (47)

where η is the scaling exponent and k is a pre-factor. Hereafter, we only consider the
case of isotropically oriented cracks.10

We determine the scaling law for the effective permeability, in the spirit of the ap-
proach described in Sect. 2. For that we need the expression for the effective per-
meability of a material with low concentration of cracks. In order to use the existing
solution we use the well known analogy between the phenomena of permeability and
thermal conductivity. The full analogue will be effective thermal conductivity, λ, of a15

material with isotropically oriented thin ellipsoidal inclusions of a material with extreme
thermal conductivity. The corresponding solution was developed by Salganik (1974).
According to this solution, the effective permeability reads

λ = λ0

(
1 +

32
9

v
)

(48)

Here λ0 is the thermal conductivity of the material, v�1 is the crack concentration. As20

the cracks are assumed absolutely conductive, their presence increases permeability.
The effective permeability of a material with cracks of concentration v can formally be
obtained from Eq. (48) by replacing thermal conductivity λ with permeability K .

K = K0

(
1 +

32
9

v
)

(49)
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where K0 is the permeability of the material.
Analogously to Eq. (35), for self-similar crack distribution f (R)=wR−4 the scaling

equation for permeability reads

ηk =
32
9
wk

From here we immediately have5

η =
32
9
w (50)

In the case when the self-similar crack distribution emerges as a result of crack growth
induced by stress fluctuations, w=27

/
32 and we finally have

K = kR3 (51)

This scaling law, if detected for a particular fracture system could serve as an indicator10

that these cracks were created by the mechanism described in this paper.

7 Conclusions

Fluid flow through geomaterials is strongly affected by the presence of fractures. Frac-
ture systems result from complex non-linear processes of crack initiation and growth.
The fracture pattern formation is a multiscale process controlled by a number of thresh-15

olds. As the phenomenon of fracturing is a highly non-linear process, the spatial stress
fluctuations – stress non-uniformity associated with heterogeneity of the material or
with the presence of residual stresses – can considerable affect the crack formation
even if the mean value of the stress fluctuations is zero.

Fracture pattern formation driven by stress fluctuations is a multistage process. At20

the first stage, microcracks are generated at the places subjected to the highest tensile
stresses when the amplitude of stress fluctuations exceeds the first threshold – local
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tensile strength of the material. These microcracks can grow to a scale macroscopic
with respect to the correlation length of the stress fluctuation because, albeit the aver-
age stress is zero, the conditional average stress (under the condition that at the place
of microcrack initiation the stress exceeds the tensile strength) is positive. This forms
the second stage of fracture pattern formation. In order to ensure crack growth the5

amplitude of stress fluctuations should be sufficient to induce the stress concentrations
at the crack contour necessary to maintain its growth, i.e. to make the stress intensity
factor (a coefficient at the stress singularity) exceed the fracture toughness. This in-
troduces the second threshold. Further crack growth is supported by interaction with
other cracks. The effect of interaction can be accounted by considering each crack10

as being immersed in an effective continuum determined by all cracks of smaller sizes
(the differential self-consistent scheme of the method of effective characteristics). For
isotropic crack orientations, this mechanism produces self-similar distribution of crack
sizes, which constitutes the third stage of the process of fracture pattern formation.
This is achieved when the amplitude of stress fluctuations reached a certain value at15

which the maximum crack size becomes infinite. This constitutes the third threshold.
For materials with self-similar crack distribution the scaling of elastic moduli and the

average stress intensity factors are governed by the power laws. Furthermore, scaling
of tensors is always isotropic: all non-zero components of a tensor scale with the same
exponent. The anisotropy affects only pre-factors.20

The analysis of the stability of self-similar crack distributions with respect to crack
growth shows that in the case of isotropic crack orientations the self-similar distribution
is stable, while the self-similar distribution of parallel cracks is not. Therefore, the latter
cannot be produces as a result of the action of stress fluctuations and crack interaction.

Permeability of a material with self-similar distribution of isotropically oriented cracks,25

which do not yet form connected networks, is also governed by a power scaling law.
For the crack distribution produced by the action of stress fluctuations the permeabil-
ity increases as cube of crack radius. This property could be used for detecting this
specific mechanism of formation of self-similar crack distributions.

1904

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/3/1879/2006/hessd-3-1879-2006-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/3/1879/2006/hessd-3-1879-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


HESSD
3, 1879–1913, 2006

Self-similar systems

A. V. Dyskin

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Appendix A

The proof that the average stress generated by a crack is zero

Consider a crack with internal surface S0 occupying a volume V with external surface
S, which is unconstrained and free of load. Suppose in response to tractions niσ

0
i j ,5

where ni is a normal vector to the crack surface directed inwards, the crack produces
stress field σi j (x) , x∈V . We also assume that there are no body forces acting on the
volume. Consider the average stress field〈
σi j

〉
=

1
V

∫
V

σi j (x)dVx (A1)

We use the following identity which is based on the Gauss’ theorem10 ∫
S+S0

σik (x)xjnkdS =
∫
V

(
σik (x)xj

)
,k dVx =

∫
V

σik,k (x)xjdVx +
∫
V

σik (x)δjkdVx (A2)

The first integral in the right-hand part is equal to zero because of the equations of
equilibrium. (The body forces are zero by assumption.) The second integral is equal
to the average stress times V. Furthermore, since the outer boundary of the volume is
free from load15 〈
σi j

〉
=

1
V

∫
V

σi j (x)dVx =
1
V

∫
S0

σik (x)xjnkdS = 0. (A3)

The last integral is equal to zero because the tractions acting on the crack faces are in
equilibrium and the gap between faces (crack opening) is zero in the elastic formulation.

Due to ergodicity, one can obtain that

σ̄i j =
〈
σi j

〉
= 0 (A4)20
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stress can directly induce fracturing, while the compressive stress should do it through local 

transition to tensile stress (That is why in brittle materials compressive strength is an order of 

magnitude higher than the tensile one.) Therefore, fractures are preferentially formed in the 

areas subjected to stress fluctuations with positive sign. 

 

In the case of residual stresses, obviously, 00 =ijσ , so only tensile parts of stress fluctuations, 

i.e. the loci where the corresponding component of stress fluctuations is positive, should be 

considered as a part of the mechanism of fracture formation. In the case of applied load there 

are situations when tensile components of ij
0σ  also vanish such that, as far as the crack 

formation is concerned, again only the tensile parts of stress fluctuations matter. The main 

example is failure in uniaxial compression, Figure 1a. In this case cracks can only form in the 

directions parallel to the load direction where no force is applied from outside. Local tensile 

stress appear as a part of stress non-uniformity caused by the material heterogeneity, for 

instance by the presence of defects (e.g., pores as in Figure 1a).  

 

The presence of defects or other heterogeneities alters the stress field without changing the 

total force and in same cases transfer compressive stress into tensile. Figure 1a illustrates one 

of the mechanisms of such a transition. A circular pore of radius R loaded by compressive 

stress of magnitude p in x direction induces vertical normal stress, yyσ on the x-axis, which 

would be absent in the absence of the hole. The distribution shown in Figure 1 (due to 

symmetry only the case x>0 is shown) is of a fluctuational nature with zero mean. The stress 

near the hole is positive (tensile) which when reaches sufficient magnitude, gives rise to 

tensile cracks, Figure 1b. 

 

1 1.5 2 2.5 x/R

-0.5

0.5

1

σyy/p

p p

1 1.5 2 2.5 x/R

-0.5

0.5

1

σyy/p

p p

1 1.5 2 2.5 x/R

pp

1 1.5 2 2.5 x/R

pp

(a)

(b)

 
Figure 1. Stress disturbance and subsequent cracking produced by a pore in uniaxial 

compression: (a) distribution of the normal stress component yyσ ; (b) crack formed at the 

pore contour by yyσ and then grown further. 

Fig. 1. Stress disturbance and subsequent cracking produced by a pore in uniaxial compres-
sion: (a) distribution of the normal stress component σyy ; (b) crack formed at the pore contour
by σyy and then grown further.
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An important observation should be made from this example: the crack is generated at the 

place of maximum stress (at the pore contour in this case) and then can grow beyond the area 

of the action of tensile stress. In general, this point is illustrated by Figure 2, where a possible 

distribution of stress fluctuations is sketched. The crack is formed at the place where the 

tensile stress reaches its maximum (the origin of the coordinate set is placed there). Then, the 

crack grows to the size considerably exceeding the characteristic length of stress fluctuations.  

 

x

σyy

Place of crack initiation

a-a

 
Figure 2. Crack growth caused by stress fluctuations. 

 

 

In order to analyse this situation we consider a 2D case of a planar crack of length 2a, Figure 

2 subjected to the stress fluctuations )(xyyσ∆  having zero average. We will assume that the 

stress fluctuations are represented by an ergodic random process such that statistical average 

coincides with the spatial average: 

 0)( =∆=∆ yyyy x σσ  (3) 

Consider a realisation )(xyyσ∆  of the random field of stress fluctuations. Suppose the crack 

is placed in the material at the place where this stress acts. We also assume, for the sake of 

simplicity, that the emerging crack in not infinitesimal thin such that the compressive parts of 

the stress fluctuations (negative parts of Figure 2) are insufficient to bring the opposite faces 

of the crack to contact. The criterion of growth of the tensile crack in this case has the form 

(e.g., Tada et al., 1985): 

 

 ∫
−

−

+
∆==

a

a

yyIIcI dt
ta

ta
t

a
KKK )(

1
, σ

π
 (4) 

where IK  is the mode I stress intensity factor, which is a coefficient at the square root 

singularity of the stress field near the crack tip, IcK  is the fracture toughness - the critical 

value of the stress intensity factor at which the crack starts growing.  

 

As the crack location in this example is independent of the stress field, the average stress 

intensity factor 

 

Fig. 2. Crack growth caused by stress fluctuations.
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Hereafter, for the sake of simplicity we return to our previous notations, which express the 

essence of the phenomenon without going into mathematical details. If the crack length is 

much higher than the correlation length then, obviously, 

 ρσσ
π

ρ

ρ

ρ

ρ

>>
−

+
= ∫∫

−−

adttdt
ta

ta
tF

a

F
K yyyyI ,)(~)(~,  (10) 

This formula coincides with the expression for the stress intensity factor for a crack loaded 

with a pair of concentrated forces, Figure 3. 

 

a-a

F

F

 
Figure 3. Equivalent representation of the crack created by self-equilibrated stress 

fluctuations shown in Figure 2. The force magnitude is given by the last equation in (10). 

 

 

 

One can observe that the stress intensity factor given by the first equation in (10) decreases 

with crack growth since the crack length is in the denominator of the formula. The crack 

growth is therefore stable: in order to maintain crack growth one needs to increase the 

magnitude of the forces, that is the amplitude of the stress fluctuations. If the crack were 

loaded by stresses with not vanishing total force, the stress intensity factor, aK yyI πσ=  

would increase as the crack grows, which indicates the unstable crack growth: in a material 

with uniform fracture toughness, once started the crack can grow indefinitely. It is clear now 

that while the stress fluctuations with zero average can support crack growth, the growth can 

only be stable: unstable crack propagation requires non-vanishing total force. 

 

In the 3D case the model of crack growth caused by stress fluctuations will be similar – a 

crack opened by a pair of concentrated forces. As further simplification necessary in 3D, we 

assume that the crack grows isotropically as a disc-like crack, Figure 4. 

 

 

Fig. 3. Equivalent representation of the crack created by self-equilibrated stress fluctuations
shown in Fig. 2. The force magnitude is given by the last equation in Eq. (10).
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F

F

R

 
Figure 4. Model of isotropic crack growth caused by stress fluctuations in 3D  – a disc-like 

crack of radius R opened by a pair of concentrated forces. 

 

 

 

In this case, the mode I stress intensity factor for the disk-like crack of radius R has the form 

(e.g., Tada et al, 2000) 

 
( ) 2/3

R

F
K I

π
=  (11) 

This expression together with the criterion of crack growth 

 

 
IcI KK =  (12) 

will be used in the following two chapters when the crack interaction and the formation of 

fracture patterns are discussed. 

 

The local tensile strength, tσ , plays a role of the first threshold: as soon as the amplitude of 

stress fluctuations reaches the local strength, a crack will be formed leading to fracture 

patterning. Its further development is also controlled by the fracture toughness of the 

material, which constitutes the second threshold in the multistage process of fracture pattern 

formation.. 

 

 
3 Emergence of self-similar distributions 

We assume now that a number of cracks have been formed by the action of stress fluctuations 

and that they grow as disc-like cracks each opened by a pair of concentrated forces of the 

same average magnitude F. We also assume that the material is isotropic and the cracks are 

oriented chaotically such that the whole system remains isotropic. 

 

As the cracks grow the effect of interaction between them becomes significant. In this case 

the interaction means that each crack is subjected to a combination of the pair of concentrated 

forces that open the crack and some additional, generally non-uniform stresses generated by 

all other cracks. This additional stress has zero mean as it is not associated with any external 

loading. Subsequently, solving the problem of interaction means finding these additional 

Fig. 4. Model of isotropic crack growth caused by stress fluctuations in 3-D – a disc-like crack
of radius R opened by a pair of concentrated forces.
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1. Original 

material with 

cracks

2. Material with 

smallest cracks is 

replaced with 

effective medium

3. Effective medium 

with middle size cracks 

is replaced with new 

effective medium
 

Figure 5. Method of effective characteristics in modelling the crack interaction: 1. The 

original material with cracks which are opened by pairs of concentrated forces (not all of 

them are shown in the picture). 2. The material with the smallest cracks is replaced by an 

effective medium with the same average response. 3. The effective medium with middle size 

cracks is replaced with a new effective medium with the same average response. 

 

 

 

We now use the above method to determine the size distribution the cracks driven by the 

concentrated forces assume due to interaction. We start with expressing the effective moduli 

for the material with cracks up to a given radius. Suppose the crack sizes are distributed 

according to the probability density function f(R) with the usual normalisation: 

 

 1)(
max

0

=∫
R

R
dRRf  (13) 

Here max0 , RR  are the minimum and maximum crack sizes respectively. If N is the total 

number of cracks per unit volume (N has units of inverse meter cubed), then the number of 

cracks per unit volume with radii between R and R+dR is 

 

 dRRNfdRRRN )(),( =+  (14) 

The total number of cracks is supposed to be constant, i.e. the generation of new cracks is 

neglected. We also use the dimensionless crack concentration 

 

 ∫==
R

R

dRRfRN(R)dRRfNRd

0

)(v,)(v 33  (15) 

 

 

Let the Young’s modulus and Poisson’s ratio of the effective medium replacing the material 

with cracks of radii up to R be E(R) and ν(R). Then, according to Salganik (1973), the 

effective characteristics for the medium with new cracks of radii between R and R+dR can be 

Fig. 5. Method of effective characteristics in modelling the crack interaction: 1. The original
material with cracks which are opened by pairs of concentrated forces (not all of them are
shown in the picture). 2. The material with the smallest cracks is replaced by an effective
medium with the same average response. 3. The effective medium with middle size cracks is
replaced with a new effective medium with the same average response.
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